

1798

Sonhos. Setiamex

Determinación del coeficiente basal de cultivo (K_{cb}) del maíz forrajero por teledetección en el norte de México

RESPONSABLES: Gerardo Delgado Ramírez¹ Martín Alejandro Bolaños González¹ Abel Quevedo Nolasco¹ Adolfo López Pérez¹ Juan Estrada Ávalos²

¹ Colegio de Postgraduados. ² INIFAP-CENID RASPA.

Introducción

El procedimiento descrito en el Manual FAO-56 es el más utilizado para el cálculo de la ET de los cultivos (ET_c).

Wright (1982) propuso el método dual, siendo el K_c producto del coeficiente basal del cultivo (K_{cb}) y el coeficiente asociado con la evaporación del suelo (K_e).

La principal referencia en este tema es el compendio del Manual FAO-56; sin embargo, tiene ciertas limitaciones, ya que solo proporciona valores de K_{cb} en tes etapas principales para cada cultivo y solo en condiciones estándar, las cuales son inexistentes en aplicaciones reales.

 $ET_c = K_c * ET_0$

Existen un número importante de métodos para la determinación de los K_{cb} para cada cultivo y etapa de desarrollo. Muchos de los cuales son laboriosos, destructivos y costosos en términos de tiempo y dinero.

Por ello, se ha optado por simplificar su determinación empleando su relación con la reflectividad de la cubierta del cultivo.

Actualmente, existe un amplio número de ecuaciones que estiman el K_{cb} para cultivos herbáceos utilizando índices de vegetación como el índice de Vegetación de Diferencia Normalizada (NDVI) y el índice de Vegetación Ajustado al Suelo (SAVI), que son los más usados por su facilidad de cálculo y derivables a partir de un sensor multiespectral.

Las nuevas misiones satelitales han despertado un gran interés en la comunidad científica debido a sus múltiples aplicaciones, así como su alta resolución espacial, temporal, espectral y radiométrica, siendo las más utilizadas las que son de distribución gratuita y fácil acceso como el satélite Sentinel 2.

La Región Lagunera es una de las principales cuencas lecheras a nivel nacional, y su ganado es alimentado fundamentalmente con alfalfa, ensilaje y concentrados; siendo el ensilaje de maíz el más común entre éstos, ya que puede constituir de 30 al 40% de la ración de vacas en producción.

Lo anterior ha provocado que en los últimos años se incrementen las áreas sembradas del maíz forrajero, ya que, además, es uno de los forrajes que requieren menos agua. En los últimos cuatro años ha sido el principal cultivo en la región con una superficie actual de 54,000 ha de una superficie de riego total de 167,000 ha.

La región dispone de dos fuentes de agua para el riego de cultivos: superficial (agua de río) y subterránea (agua de pozo), pero ambas fuentes están limitadas y con poca disponibilidad.

Lo que obliga a los productores a implementar estrategias para incrementar el uso eficiente del agua de riego como: rehabilitación de canales, construcción de estanques, nivelación de tierras, tecnificación del riego parcelario, etc.

Sin embargo, todos estos esfuerzos no tendrán los mejores resultados sino se parte del principio de aplicar sólo los requerimientos hídricos de los cultivos. Es importante realizar estimaciones prácticas y operativas del K_{cb} durante todo el ciclo vegetativo, para posteriormente calcular la ET_c y luego programar los riegos haciendo un uso eficiente del agua.

El uso de información espectral de imágenes de satélite Sentinel-2 es una alternativa al método de FAO-56 para calcular el K_{cb} . En este trabajo se evaluaron nueve algoritmos, seis que utilizan el índice NDVI y tres el SAVI, para estimar el K_{cb} del maíz forrajero durante todo el ciclo vegetativo en dos parcelas con distinta fuente de agua y diferente manejo de riego, identificando cuáles algoritmos presentan mejores precisiones al compararlo con el K_{cb} obtenido de tablas del Manual FAO-56.

Materiales y métodos

El estudio se realizó durante el ciclo primavera – verano 2021 en dos parcelas de maíz forrajero ubicadas en el municipio de Francisco I. Madero, Coahuila. Ambas parcelas forman parte de la superficie de riego del Módulo XII del DR 017 Región Lagunera.

Características	Parcela 1	Parcela 2
Latitud	25° 46′ 44.86″ N	25° 47′ 17.44″ N
Longitud	103° 18′ 48.65″ O	103° 18′ 15.96″ O
Híbrido	N83N5 (SYNGENTA)	8576 (ABT)
Fecha de siembra	26 de febrero 2021	09 de abril 2021
Fecha de cosecha	28 de junio 2021	09 de agosto 2021
Fuente de agua	Superficial y Subterránea	Superficial
Superficie de riego (ha)	11.41	6.32
Tipo de sistema de riego	Válvulas Alfalferas	Gravedad
Textura de suelo predominante	Franco Arcillo-Limoso	Arcilloso
No. Riegos aplicados	Presiembra y 4 Auxilios	Presiembra y 2 Auxilios
Lámina de riego aplicada (cm)	93.5	83.9

En ambas parcelas se establecieron siete semillas por metro lineal y una separación entre surco de 0.76 m; resultando una densidad de siembra de alrededor de 92 mil plantas por hectárea.

Descarga y procesamiento de las imágenes de satélite

Facha	Ы	Imagan Sontinal 2	DDS			
Fecha	60	iniagen Sentinei-2	Parcela 1	Parcela 2		
26 Febrero 2021	57	S2B_MSIL2A_20210226T172259_N0214_R012_T13RFJ_20210226T214213	0			
08 Marzo 2021	67	S2B_MSIL2A_20210308T172049_N0214_R012_T13RFJ_20210308T212335	10			
13 Marzo 2021	72	S2A_MSIL2A_20210313T172111_N0214_R012_T13RFJ_20210313T214954	15			
18 Marzo 2021	77	S2B_MSIL2A_20210318T171929_N0214_R012_T13RFJ_20210318T215231	20			
23 Marzo 2021	82	S2A_MSIL2A_20210323T171951_N0214_R012_T13RFJ_20210323T230801	25			
28 Marzo 2021	87	S2B_MSIL2A_20210328T171849_N0214_R012_T13RFJ_20210328T200004	30			
02 Abril 2021	92	S2A_MSIL2A_20210402T171851_N0300_R012_T13RFJ_20210402T232701	35			
07 Abril 2021	97	S2B_MSIL2A_20210407T171849_N0300_R012_T13RFJ_20210407T222246	40			
12 Abril 2021	102	S2A_MSIL2A_20210412T171851_N0300_R012_T13RFJ_20210412T230806	45	3		
17 Abril 2021	107	S2B_MSIL2A_20210417T171849_N0300_R012_T13RFJ_20210429T111916	50			
02 Mayo 2021	122	S2A_MSIL2A_20210502T171851_N0300_R012_T13RFJ_20210502T223010	65	23		
07 Mayo 2021	127	S2B_MSIL2A_20210507T171849_N0300_R012_T13RFJ_20210507T211847	70	28		
12 Mayo 2021	132	S2A_MSIL2A_20210512T171901_N0300_R012_T13RFJ_20210512T230000		33		
17 Mayo 2021	137	S2B_MSIL2A_20210517T171859_N0300_R012_T13RFJ_20210517T211944	80	38		
22 Mayo 2021	142	S2A_MSIL2A_20210522T171901_N0300_R012_T13RFJ_20210522T231747	85	43		
27 Mayo 2021	147	S2B_MSIL2A_20210527T171859_N0300_R012_T13RFJ_20210527T213455	90	48		
01 Junio 2021	152	S2A_MSIL2A_20210601T171901_N0300_R012_T13RFJ_20210601T215439	95	53		
06 Junio 2021	157	S2B_MSIL2A_20210606T171859_N0300_R012_T13RFJ_20210606T211409	100	58		
11 Junio 2021	162	S2A_MSIL2A_20210611T171901_N0300_R012_T13RFJ_20210611T215009	105	63		
16 Junio 2021	167	S2B_MSIL2A_20210616T171859_N0300_R012_T13RFJ_20210616T214422	110	68		
21 Junio 2021	172	S2A_MSIL2A_20210621T171901_N0300_R012_T13RFJ_20210621T231524	115	73		
26 Junio 2021	177	S2B_MSIL2A_20210626T171859_N0300_R012_T13RFJ_20210626T213304	120	78		
06 Julio 2021	187	S2B_MSIL2A_20210706T171859_N0301_R012_T13RFJ_20210706T212441		88		
16 Julio 2021	197	S2B_MSIL2A_20210716T171859_N0301_R012_T13RFJ_20210716T211149		98		
26 Julio 2021	207	S2B_MSIL2A_20210726T171859_N0301_R012_T13RFJ_20210726T220612		108		
31 Julio 2021	212	S2A_MSIL2A_20210731T171901_N0301_R012_T13RFJ_20210731T215232		113		

Se utilizaron 26 imágenes multiespectrales de los satélites Sentinel 2A y 2B sin nubosidad, con un nivel de procesamiento 2A (imágenes ortorectificadas y corregidas atmosféricamente).

Las imágenes se descargaron de forma gratuita en el sitio web Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/h ome)

Posteriormente, se recortaron los polígonos de interés (melgas) en ambas parcelas utilizando el software de libre acceso QGis v. 3.10.6.

Se seleccionó una melga por parcela; la melga de la **Parcela 1**, con longitud de 125 m y ancho de 20 m, superficie de 2,500 m² (23 píxeles).

La melga de la **Parcela 2** presentó el mismo ancho de melga con una longitud de 290 m, superficie de 5,800 m² (55 píxeles).

Cálculo de los índices NDVI y SAVI

El NDVI (Rouse et al., 1974).

$$NDVI = \frac{NIR - R}{NIR + R}$$

Donde, *NDVI* es el índice de vegetación de diferencia normalizada (adimensional); *NIR* es la reflectancia en la banda del infrarrojo cercano (%); y *R* es la reflectancia en la banda del rojo (%). De acuerdo con las bandas espectrales que contienen las imágenes Sentinel-2; B8 corresponde a la banda *NIR* y B4 a la banda *R*, ambas con una resolución espacial de 10 m.

SAVI (Huete, 1988). $SAVI = \frac{(1+L) * (NIR - R)}{(NIR + R + L)}$

Donde, *L* es un factor de corrección del brillo del suelo. Para este estudio, en las dos parcelas se utilizaron valores de *L* de 0.10 a 0.30 durante los primeros 50 días después de la siembra (DDS) en la Parcela 1 y 63 DDS en la Parcela 2. El resto del ciclo en ambas parcelas se empleó el valor de cero; ya que en esta etapa de cultivo presentaba mayor cobertura vegetal.

Se estimaron las medidas de tendencia central (promedio y moda) de los índices antes mencionados a nivel melga mediante el complemento "Zonal Statistics" (instalado en QGis v. 3.10.6).

Elaboración de la curva K_{cb} de maíz con las tablas del Manual

10 días

Los valores de K_{cb} de tablas son para climas subhúmedos para condiciones de humedad relativa mínima (HR_{min}) de 45% y velocidad del viento (VV) de 2 m s^{-1} .

Estimación del K_{cb} con índices de vegetación.

Algoritmos	IV	Ecuación	Fuente
Choudhury K _{cbNDVI}	NDVI	(1) $K_{cb} = 1.25 * NDVI + 0.20$	Choudhury et al., (1994)
Glez-Piqueras K _{cbNDVI}	NDVI	(2) $K_{cb} = 1.22 * NDVI + 0.15$	González-Piqueras et al., (2005)
Calera y Glez K _{cbNDVI}	NDVI	(3) $K_{cb} = 1.15 * NDVI + 0.17$	Calera y González (2007)
Campos K _{cbNDVI}	NDVI	(4) $K_{cb} = 1.44 * NDVI - 0.10$	Campos <i>et al.,</i> (2010)
Argolo K _{cbNDVI}	NDVI	(5) $K_{cb} = K_{cmax} \left[1 - \left(\frac{NDVI_{max} - NDVI}{NDVI_{max} - NDVI_{min}} \right)^n \right]$	Argolo <i>et al.,</i> (2020)
Allen FAO-56 K _{cbNDVI}	NDVI	(6) $K_{cb} = 1.50 * NDVI$ (7) $K_{bc} = 1.21 * NDVI$	Allen <i>et al.,</i> (2006)
Glez-Dugo K _{cbSAVI}	SAVI	(8) $K_{cb} = \left(\frac{K_{cmax}}{fc_{eff}}\right) * \left(\frac{SAVI - SAVI_{suelo}}{SAVI_{max} - SAVI_{suelo}}\right)$	González-Dugo <i>et al.,</i> (2009)
Glez-Piqueras K _{cbSAVI}	SAVI	(9) $K_{cb} = 1.60 * SAVI + 0.21$	González-Piqueras et al., (2005)
Argolo K _{cbSAVI}	SAVI	(10) $K_{cb} = K_{cmax} \left[1 - \left(\frac{SAVI_{max} - SAVI}{SAVI_{max} - SAVI_{min}} \right)^n \right]$	Argolo <i>et al.,</i> (2020)

Donde, K_{cmax} es el coeficiente del cultivo del maíz en la etapa media; $NDVI_{max}$ es el valor máximo de NDVI de la escena; $NDVI_{min}$ es el valor de NDVI en la línea de suelo (0.10); n es un coeficiente relacionado con la arquitectura foliar del cultivo, para NDVI se asume el valor de 0.5 y 1.0 para SAVI; fc_{eff} es la fracción de cobertura efectiva del suelo (0.80); $SAVI_{max}$ es el valor máximo de SAVI de la escena; $SAVI_{suelo}$ o $SAVI_{min}$ es el valor de suelo desnudo (0.12).

Análisis estadístico.

Para evaluar la precisión de los K_{cb} estimados del maíz forrajero con respecto a los K_{cb} de tablas del Manual FAO-56, se utilizaron tres indicadores estadísticos:

a) Coeficiente de determinación (R²).

b) Cuadrado medio del error (CME).

c) Error relativo promedio (ERP).

 $R^{2} = \left[\frac{\sum_{i=1}^{n} (y_{iobt} - \overline{y_{iobt}})(y_{iest} - \overline{y_{iest}})}{\left(\sum_{i=1}^{n} (y_{iobt} - \overline{y_{iobt}})^{2}\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} (y_{iest} - \overline{y_{iest}})^{2}\right)^{\frac{1}{2}}}\right]$ $CME = \left(\frac{1}{n} \sum_{i=1}^{n} (y_{iest} - y_{iobt})^{2}\right)^{\frac{1}{2}}$ $ERP = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{|y_{iobt} - y_{iest}|}{y_{iobt}}\right) * 100$

Donde, y_{iobt} son los datos de K_{cb} obtenidos de tablas del Manual FAO-56; $\overline{y_{iobt}}$ es el promedio de los datos de K_{cb} obtenidos de tablas del Manual FAO-56; y_{iest} son los datos de K_{cb} estimados con los algoritmos que utilizan IV; $\overline{y_{iest}}$ es el promedio de los datos de K_{cb} estimados con los algoritmos propuestos en este estudio, los cuales utilizan IV e imágenes satelitales Sentinel-2; *n* es el número de observaciones.

Resultados

Comparación del K_{cb} calculado por los algoritmos y el K_{cb} obtenido del Manual FAO-56 durante las etapas de crecimiento del maíz forrajero establecido en la **Parcela 1**.

Algoritmos	МТС	K _{cb ini} (n=6)		K _{cb des} (n=7)		K _{cb med} (n=6)		K _{cb fin} (n=2)		K _{ch ciclo} (n=21)		
		CME	ERP	CME	ERP	CME	ERP	CME	ERP	R ²	CME	ERP
Choudhury K _{cbNDVI}	Prom	0.26	170.8	0.20	29.5	0.10	8.2	0.29	29.6	0.92	0.21	19.6
Glez-Piqueras K _{cbNDVI}	Prom	0.20	134.2	0.14	19.3	0.17	14.2	0.12	1.5	0.92	0.18	9.9
Calera y Glez K _{cbNDVI}	Prom	0.21	139.8	0.13	16.9	0.20	16.7	0.21	17.5	0.92	0.18	7.9
Campos K _{cbNDVI}	Prom	0.04	8.3	0.06	2.9	0.26	22.2	0.17	8.8	0.92	0.16	11.6
Argolo K _{cbNDVI}	Prom	0.10	63.9	0.17	23.7	0.47	39.5	0.21	18.1	0.87	0.28	33.6
Allen FAO-56 K _{cbNDVI}	Prom	0.10	59.5	0.10	13.6	0.16	13.2	0.24	21.9	0.92	0.14	4.0
Glez-Dugo K _{cbSAVI}	Prom	0.07	7.4	0.27	37.0	0.06	3.6	0.39	44.4	0.90	0.20	18.2
Glez-Piqueras K _{cbSAVI}	Prom	0.36	239.1	0.44	68.6	0.16	13.6	0.52	60.2	0.90	0.37	50.8
Argolo K _{cbSAVI}	Prom	0.07	25.9	0.09	9.6	0.21	17.1	0.20	15.5	0.90	0.14	5.5

MTC = medida de tendencia central; Prom = promedio; R² = coeficiente de determinación (adimensional); CME = cuadrado medio del error (adimensional); ERP = error relativo promedio (%); n = número de observaciones (imágenes satelitales utilizadas).

Comparación del K_{cb} calculado por los algoritmos y el K_{cb} obtenido del Manual FAO-56 durante las etapas de crecimiento del maíz forrajero establecido en la **Parcela 2**.

Algoritmos	MTC	K _{cb ini} (n=6)		K _{cb des} (n=7)		K _{cb med} (n=6)		K _{cb fin} (n=2)		K _{cb ciclo} (n=21)		
		CME	ERP	CME	ERP	CME	ERP	CME	ERP	R ²	CME	ERP
Choudhury K _{cbNDVI}	Moda	0.31	202.8	0.14	13.3	0.05	0.7	0.03	3.2	0.92	0.17	15.6
Glez-Piqueras K _{cbNDVI}	Moda	0.25	165.4	0.12	3.4	0.09	7.0	0.04	3.4	0.92	0.14	6.0
Calera y Glez K _{cbNDVI}	Moda	0.26	169.2	0.12	2.0	0.12	9.9	0.07	6.3	0.92	0.15	4.2
Campos K _{cbNDVI}	Prom	0.19	98.9	0.15	19.5	0.09	7.3	0.04	3.5	0.94	0.15	12.3
Argolo K _{cbNDVI}	Prom	0.08	2.6	0.12	9.3	0.14	6.8	0.13	12.1	0.93	0.11	8.3
Allen FAO-56 K _{cbNDVI}	Prom	0.21	121.3	0.14	12.8	0.18	15.5	0.13	11.9	0.94	0.16	6.1
Glez-Dugo K _{cbSAVI}	Moda	0.12	52.8	0.14	13.6	0.19	14.7	0.20	18.5	0.95	0.15	16.0
Glez-Piqueras K _{cbSAVI}	Moda	0.43	285.3	0.33	50.9	0.27	23.1	0.30	27.9	0.95	0.34	49.5
Argolo K _{cbSAVI}	Moda	0.08	22.2	0.10	9.1	0.12	8.2	0.06	5.2	0.95	0.10	7.2

MTC = medida de tendencia central; Prom = promedio; R² = coeficiente de determinación (adimensional); CME = cuadrado medio del error (adimensional); ERP = error relativo promedio (%); n = número de observaciones (imágenes satelitales utilizadas).

Mapas de K_{cb} con el algoritmo Campos K_{cbNDVI} en la **Parcela 1** (11.41 ha) a escala de píxel.

Mapas de K_{cb} con el algoritmo Campos K_{cbNDVI} en la **Parcela 2** (6.32 ha) a escala de píxel.

Conclusiones

El uso de información espectral de las bandas roja e infrarroja cercana registrada en las imágenes del satélite Sentinel-2 es una alternativa factible y adecuada al método del Manual FAO-56 para calcular el coeficiente basal de cultivo (K_{cb}) para el cultivo de maíz forrajero.

Además, combinando el uso de esta tecnología con el levantamiento de información en campo, es posible analizar su comportamiento con mayor detalle y realizar estimaciones más precisas, ya que se cuenta con información específica para el ciclo de cultivo y sitio de estudio, lo que permite dar seguimiento a su evolución en tiempo cuasi real y, en consecuencia, realizar la programación del riego en forma oportuna en tiempo y espacio, incrementando la eficacia del uso del agua.

El algoritmo Campos K_{cbNDVI} fue el método que presentó las mejores precisiones para estimar el K_{cb} del maíz forrajero para las dos diferentes condiciones del riego parcelario; tanto en todas sus etapas de crecimiento, como en la totalidad de su ciclo de cultivo obteniendo una precisión promedio de 88%.

Sonhos. Setiamex

ŪĐG

71

GRACIAS!

GERARDO DELGADO RAMÍREZ COLEGIO DE POSTGRADUADOS CAMPUS MONTECILLO ALUMNO DE DOCTORADO EN HIDROCIENCIAS <u>delgado.gerardo@colpos.mx</u>

IMTA

inifap

AGRICULTURA

Fecha de presentación: 04 de octubre 2023