

Quinto Congreso Nacional de Riego y Drenaje COMEII-AURPAES 2019 Septiembre 2019 | Mazatlán, Sinaloa

@CongresoCOMEII

A HYDROLOGIC ENGINEERING ANALYSIS OF A FAILED RANGELAND WATER CONTROL STRUCTURE ON THE BUENOS AIRES NATIONAL WILDLIFE REFUGE

CAMERON DORSETT; DONALD SLACK; MARY NICHOLS; KAMEL DIDAN

Fecha de presentación 19/septiembre/2019 Mazatlán, Sinaloa, México

www.comeii.com | www.riego.mx | info@comeii.com

Outline

- Introduction
- Methods and Materials
- Results and Discussion
- Conclusions

- Comprehensive watershed analysis including:
 - Characterization of selected study site watershed
 - Historical evaluation of selected study site watershed
 - Focus on spillway/weir at hydrological outlet of watershed using hydrologic

engineering methods to determine conditions of structural failure

- Study conducted on present-day Buenos Aires National Wildlife Refuge (BANWR)
 - 47,500 [ha] in total
 - Once working cattle ranch
- Founded 1880s by Don Pedro Aguirre Jr. as Buenos Ayres Ranch
- First water retention structure, Aguirre Lake, est. circa 1883-1886
- Many ownership changes—name change to Buenos Aires Ranch in 1909
- Implementation of water control structures (ranch owners and Soil Conservation Service)
- U.S. Fish and Wildlife purchase in 1985 to establish wildlife reserve (BANWR)

- Declining hydrologic connectivity on arid and semi-arid Southwestern rangelands
- Arroyo cutting/channelization of floodplains alters ground/surface water interactions
- Heavy grazing, intense flooding, failed/unmaintained water control structures

- Water control structures implemented across rangeland watersheds including:
 - Berms, water spreaders, spillways/weirs, flow control gates, stock tanks

1. Map watershed by pinpointing key water control structures and drainages/streamlines

2. Utilize historic/current aerial/ground-level imagery to characterize watershed

3. Conduct hydrologic engineering analysis of spillway to quantify maximum capacity

and the storm magnitude generating large enough runoff to exceed that capacity

- 1. Geographic Information Systems (GIS) software (ArcMap 10.5.1 and Google Earth Pro)
- 2. Both historic and current aerial and ground-level imagery

(USGS Earth Explorer, Google Earth Pro, photos taken in person)

- 3. Field visits to walk watershed hydrologic route and take measurements of spillway
- 4. Hydrologic engineering analysis via weir formula, Rational and Curve Number Methods

• Spillway capacity calculated using standard weir formula:

$$Q = CLH^{\frac{3}{2}}$$

where,

Q = discharge [m³s⁻¹] C = weir coefficient = 1.70 L = weir length [m] H = hydraulic head [m]

Runoff Estimations (Rational Method)

• The peak flow rate was calculated as:

$$q_p = \frac{CiA}{360}$$

where,

- q_p = peak runoff [m³s⁻¹] C = runoff coefficient i = rainfall intensity [mm/hr] A = drainage area [ha]
- Runoff coefficients from USDA Web Soil Survey
- Rainfall intensities from NOAA

• Watershed areas:

Sub-watershed A – 94.2 [ha] Sub-watershed B – 122 [ha] Sub-watershed C – 1285 [ha] Entire watershed – 1501 [ha] **Design Storms (Curve Number Method)**

Exit

 Rainfall-runoff hydrograph modeling via add-on for Microsoft Excel called Wildcat5

 Assists watershed analysts in predicting peak flow/runoff volumes from single-event storms with Curve Number Method as basis

• CN Method is basis for estimation of runoff volume and generation of hydrograph:

$$Q = \frac{(P-0.2S)^2}{P+0.8S}$$
, P > 0.2S

where,

- Q = runoff depth/volume [mm] P = precipitation depth [mm] S = soil water retention parameter [mm]
- The soil water retention parameter is based on the CN and is found using:

$$S = \frac{25400}{CN} - 254 (Q, P, S [mm])$$

Rainfall Excess Options			
DISTRIBUTED	Accept & Continue	Prior Settings & Continue	
Ourve Number (de	efault) $\lambda = 0.2$	CN Values	
🔿 Curve Number (S	0.05) $\lambda = Ia/S_{0.05}$	CN Values	
 Exponentially distr 	ibuted infiltration capacities		
	μ = 9.4	996 mm/hr Calculator	
O Distributed F	Q = P - F	F Values	

Hydrolo	jic Response l	Jnits			
	Get	CN Value from Tabl	e		Load File
	Area (Ha)	Description	CN (0.2)	CN (0.05)	
1	90.	1 desert shrub, fa	81	73.83	Save File
2					
3	_				Accept & Continue
4	_				
5	-				Prior Settings & Continue
0					
8	-				
9	-				
10					Total Area = 90.1 Ha
11					
12					Weighted CN (0.2) = 81.00
13					
14					Weighted CN (0.05) = 73.83
15					
16	-				
1/					
10	-				CN (0.05) values are calculated
20					Do NOT enter them
20					bonor char dien

STORM AND STORM DISTRIBUTION	
WATERSHED INFORMATION	ſ
Rainfall Excess Method	
Time of Concentration	
Unit Hydrograph Type	

Watershed Info & Time of Concentration								
Watershed Identification 1/4/2010								
Area (Ha) 90.1 CN : 81.00	Area (Ha) 90.1 CN : 81.00							
Time of Concentration / Lag Time	1							
⊖ Given value TC= 0.5 hr	Curve Numbers							
Calculate Tc Kent's equation (SCS method) [1972] (most used ▼	Accept & Continue							
Average Land Slope (%) 2.2								
Length of Longest Channel (m) 3140	Prior Settings & Continue							
Calculated Tc (hr) 2.235	Ø Help							
SIMAS Equation TL [Centroid - Centroid Lag]								
Width (m) 261								
Average Land Slope (Percent) 0.6								
Time Lag (hr) 0.792								

- Storm *inputs* (duration and rainfall) were split into two categories: "flash floods" (2 and 6-hr) and "floods" (12 and 24-hr)
- Recurrence intervals for the analysis were 10, 25, 60, and 80-year

Routing Parameters		×
Reservoir area	0.427	На
Spillway Length	13.4	m
Spillway weir coeff	1.7	
Help	Execute Routing	Cancel

• Spillway Capacity: $Q = 21.1 \text{ [m}^3\text{s}^{-1}\text{]}$

• Rational Method:

Table 1. Precipitation Intensity (mm/hr) and corresponding peak runoff rates (m³s⁻¹) for Subwatershed A | Latitude: 31.6042°, Longitude: -111.5129° | Elevation (USGS): 1063.3 m

	Storm Recurrence Interval [yr]					
	10	25	50	60	80	100
Intensity (mm/hr)	46.2	54.9	61.6	63.0	65.7	68.5
Peak runoff (m ³ s ⁻¹)	3.24	3.85	4.32	4.42	4.61	4.80

Table 2. Precipitation Intensity Estimates (mm/hr) and corresponding peak runoff rates (m³s⁻¹) for <u>Sub-watershed B | Latitude: 31.6074°, Longitude: -111.5094° | Elevation (USGS): 1064.3 m</u>

	Storm Recurrence Interval [yr]						
	10	25	50	60	80	100	
Intensity (mm/hr)	61.1	72.8	81.6	83.2	86.5	89.8	
Peak runoff (m ³ s ⁻¹)	6.11	7.29	8.17	8.33	8.66	8.99	

Sub-watershed C Latitude: 31.6596°, Longitude: -111.6144° Elevation (USGS): 1232.3 m								
		Storm Recurrence Interval [yr]						
	10	25	50	60	80	100		
Intensity (mm/hr)	20.5	24.6	27.7	28.5	30.1	31.7		
Peak runoff (m ³ s ⁻¹)	22.8	27.4	30.9	31.8	33.6	35.4		

Table 3. Precipitation Intensity Estimates (mm/hr) and corresponding peak runoff rates (m³s⁻¹) for

Table 4. Precipitation Intensity Estimates (mm/hr) and corresponding peak runoff rates (m³s⁻¹) for Entire 1501-ha Watershed | Latitude: 31.6596°, Longitude: -111.6144° | Elevation (USGS): 1232.3 m

	Storm Recurrence Interval [yr]						
	10	25	50	60	80	100	
Intensity (mm/hr)	20.5	24.6	27.7	28.5	30.1	31.7	
Peak runoff (m ³ s ⁻¹)	26.4	31.6	35.6	36.7	38.8	40.8	

CN Method/Wildcat5

Table 5. Precipitation Depth Estimates (mm) for Sub-watershed C | Latitude: 31.6596°, Longitude: - 111.6144° | Elevation (USGS): 1232.3 m

Storm Duration [hr]	Storm Recurrence Interval [yr]					
	10	25	60	80		
2	59	71	81.8	85.4		
6	67	81	94.2	98.6		
12	77	92	107.4	112.2		
24	86	102	116.4	121.2		

Table 6. Design Storm Peak Flows (m³s⁻¹) for Sub-watershed C | Latitude: 31.6596°, Longitude: - 111.6144° | Elevation (USGS): 1232.3 m

Storm Duration [hr]	Storm Recurrence Interval [yr]					
	10	25	60	80		
2	104.8	153.6	200.7	217.0		
6	74.5	105.4	136.0	146.3		
12	56.8	76.1	96.4	102.8		
24	35.7	46.5	56.4	59.7		

Figure 6. Design storm hydrographs producing peak "flood"-flow at spillway capacity threshold/limit a) 10-yr, 24-hr (35.7 [m³s⁻¹]) and b) routed through reservoir (35.4 [m³s⁻¹]) over Subwatershed C.

Table 7. Precipitation Depth Estimates (mm) for Entire 1501-ha Watershed | Latitude: 31.6596°, Longitude: -111.6144° | Elevation (USGS): 1232.3 m

Storm Duration [hr]	Storm Recurrence Interval [yr]					
	10	25	60	80		
2	59	71	81.8	85.4		
6	67	81	94.2	98.6		
12	77	92	107.4	112.2		
24	86	102	116.4	121.2		

Table 8. Design Storm Peak Flows (m³s⁻¹) for Entire 1501-ha Watershed | Latitude: 31.6596°, Longitude: -111.6144° | Elevation (USGS): 1232.3 m

Storm Duration [hr]	Storm Recurrence Interval [yr]			
	10	25	60	80
2	118.1	174.8	229.7	248.6
6	83.4	120.8	158.1	170.9
12	64.5	87.2	111.3	118.9
24	42.0	54.6	66.2	70.0

Figure 7. Design storm hydrographs producing peak "flood"-flow at spillway capacity threshold/limit a) 10-yr, 24-hr (42.0 [m³s⁻¹]) and b) routed through reservoir (41.6 [m³s⁻¹]) over Entire 1501-ha Watershed.

- Spillway discharge capacity calculated as 21.1 [m³/s].
 - Likely built within channel without similar capacity analysis presented
- Based on Rational Method and CN Method Results:
 - Spillway of adequate capacity for runoff volumes generated for 10-yr to 25-yr recurrence interval storms of variable durations and intensities IF spatial extent of rainfall limited to Sub-watersheds A and B.
 - Spillway capacity exceeded for runoff volumes generated for 10-yr or 25-yr recurrence interval storms of all durations and intensities evaluated IF rainfall occurred over Sub-watershed C and/or the Entire 1501-ha Watershed.

GRACIAS

THE UNIVERSITY OF ARIZONA

Contact Information

Cameron Dorsett; Donald Slack; Mary Nichols; Kamel Didan

The University of Arizona

ckdorsett@email.arizona.edu slackd@email.arizona.edu mary.nichols@ars.usda.gov didan@email.arizona.edu

