

Diseño de una arquitectura en la nube para la programación del riego con dispositivos móviles, aplicando aprendizaje automático

Daniel Arturo Salinas Verduzco
Ernesto Sifuentes Ibarra
Waldo Ojeda Bustamante
Yobani Martínez Ramírez
Fecha 30/11/2017

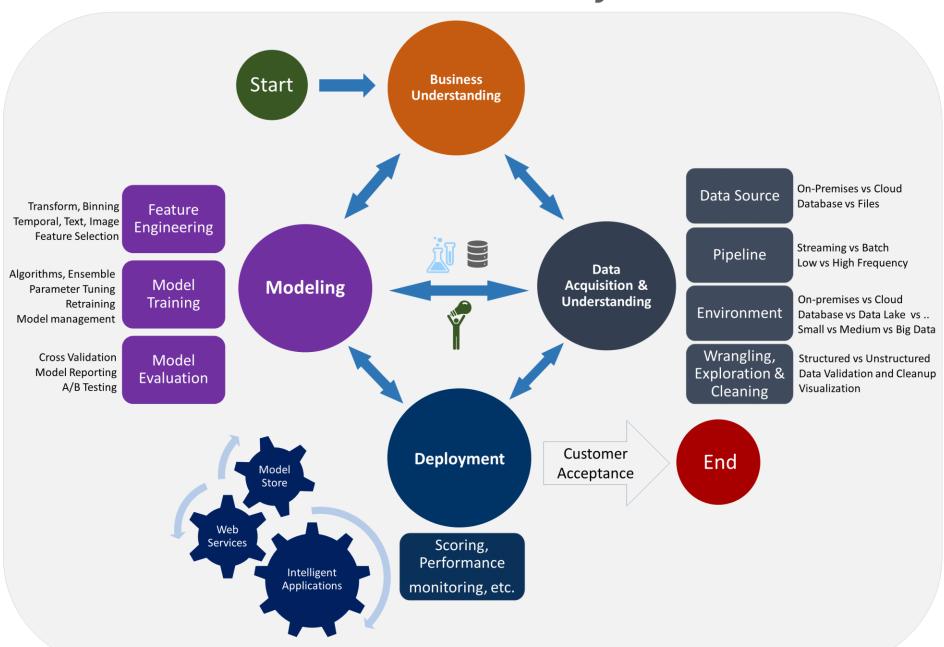
Contenido

- Introducción
- Materiales y métodos
 - Micosoft Azure Machine Learning Studio
 - Firebase
 - Delphi
 - SQLite
- Análisis y discusión de resultados
 - Arquitectura del sistema
 - Componentes
 - Comunicación
 - Aprendizaje automático
 - Aprendizaje automático
- Conclusiones

Introducción

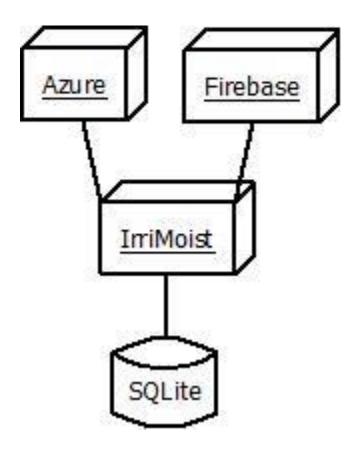
- Las tecnologías de información son una herramienta de vital importancia para la innovación en el sector del agua, ya que pueden eficientizar los procesos para gestionar los recursos hídricos del país (Hernández González, 2014)
- Ejemplos: Spriter, CalRiego, IrriModel e IrriNet.
- Sin embargo, estos sistemas solo están pensados para usarse en una computadora local o a través de una página web, usan herramientas de desarrollo tradicionales que requieren bastante trabajo de mantenimiento porque hay que detallar que y como va a llevar a cabo las tareas el sistema.

Microsoft Azure Machine Learning Studio

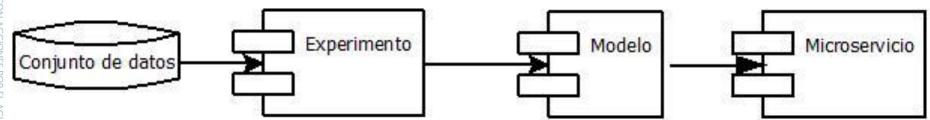

Firebase

Delphi 10.2 Tokyo

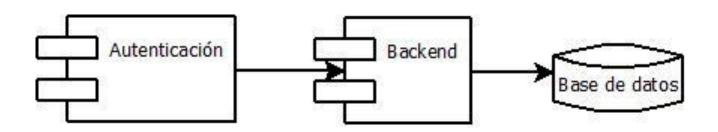
Data Science Lifecycle



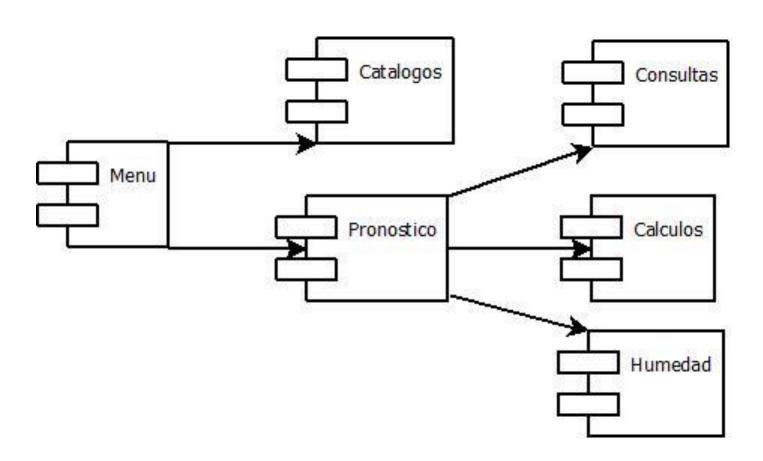
Arquitectura del sistema



Componentes de Azure



Componentes de Firebase



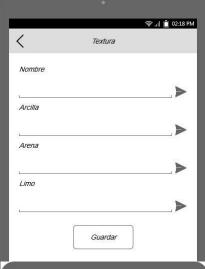
Componentes de IrriMoist

Coeficientes entrenados en Azure MLS

- El conjunto de datos subido a Azure ML Studio incluye 9 cultivos de ciclos cortos, intermedios y largos con 5 diferentes sistemas de riego.
- Al final del entrenamiento el algoritmo que dio mejores resultados fue la red neuronal cambiando los parámetros número de redes ocultas configurado a 180, el número de iteraciones de aprendizaje configurado a 1000 y el tipo de normalizador Gaussiano.
- Con esto se obtuvieron los siguientes resultados de R2 tal y como se puede ver en el cuadro 1.

Coeficiente	R ²
Kc	0.983802
Pr	0.973043

Aplicación móvil



		<section-header> , il 📋 02:18 PM</section-header>
<	Parcelas	
Parcela 1		
Parcela 2		
Parcela 3		
Parcela 4		
Parcela 5		

Nombre		
Textura		
Arcilla		•
Cultivo		7 1 8 1
Cartamo		•
Fecha de siembra		233
03/10/2014		
Tipo		
Corto - Aspersión	0.00	*

(Pronóstico	
Parcela		
Parcela 1		-
Tipo de sensor		
CS 615		,
Lectura		
50		
D	Pronosticar fas al riego = 10	

Conclusiones

- Con este trabajo se ha logrado diseñar una arquitectura que es elástica, automatizada y distribuida gracias a plataformas en la nube existentes.
- Es elástica porque se puede escalar automáticamente replicando los microservicios en base a la demanda de los usuarios de forma transparente.
- Es automatizada porque permite agregar reglas que en base a eventos que ocurran se puede aumentar o disminuir los recursos usados por el sistema.
- Y es distribuida porque cada servicio web es independiente, esto permite aplicar metodologías agiles como Scrum para priorizar las funcionalidades y desarrollarlas por partes sin afectar lo que ya esta desplegado.

Gracias

Daniel Arturo Salinas Verduzco Estudiante de doctorado-Universidad Da Vinci

Universidad Autónoma de Sinaloa

dsalinasv@uas.edu.mx

www.comeii.com/comeii2017

info@comeii.com

