

ANÁLISIS HIDRÁULICO DE UNA ESTRUCTURA DE CRUCE TIPO ALCANTARILLA

Roberto Arellano Choca; Mauricio Carrillo García

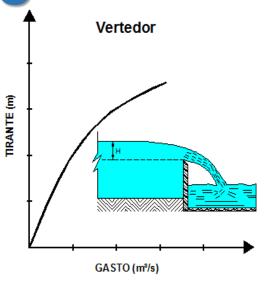
Departamento de Irrigación, Universidad Autónoma Chapingo.

- I. Objetivos
- II. Antecedentes
- III. Diseño, construcción y operación del dispositivo
- IV. Resultados
- V. Conclusiones

OBJETIVOS

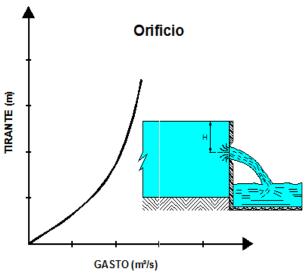
- Diseñar, construir y operar un modelo para su análisis hidráulico.
- Analizar el comportamiento del agua trabajando a distintos niveles aguas arriba y aguas abajo.
- Obtener la curva de rendimiento de entrada.
- Obtener las ecuaciones que rigen el comportamiento del agua.
- Analizar el cambio de funcionamiento hidráulico del flujo trabajando a presión a superficie libre.

ALCANTARILLAS



FUNCIONAMIENTO HIDRÁULICO

Ecuación de un vertedor circular (Azevedo y Acosta (1976)):


$$Q = C_d * D^{0.693} H^{1.807}$$

Q: Caudal, en m³/s.

 C_d : Coeficiente de descarga, 1.518 m^{0.5}/s.

D: Diámetro, en m.

H: Tirante de operación, en m.

Ecuación de un orificio:

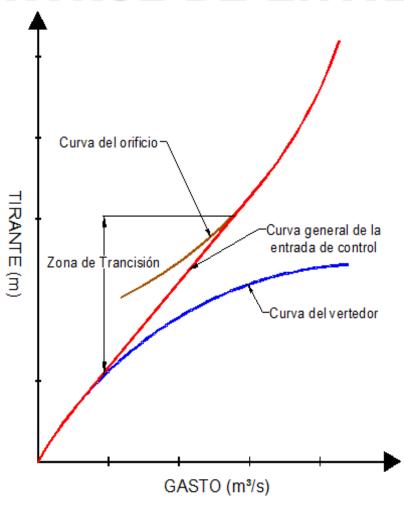
$$Q = C_d * A * \sqrt{2gH}$$

Q: Caudal, en m³/s.

 C_d : Coeficiente de descarga, adimensional.

A: Área del orificio, en m^2 .

g: Fuerza de la aceleración gravitacional, 9.8 m/s²


H: Tirante de operación, en m.

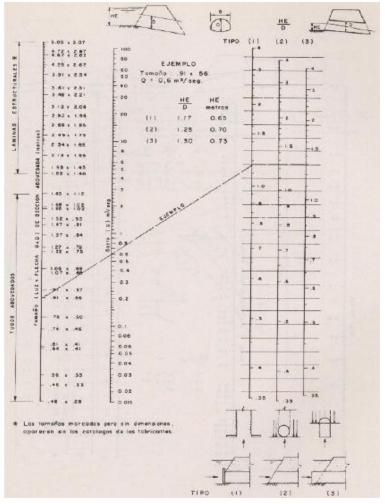
CURVA DE CONTROL DE ENTRADA

Fuente: Hydraulic Design of Highway Culverts, 2012

DISEÑO DE ALCANTARILLAS

- * Precipitación
- * Área de influencia

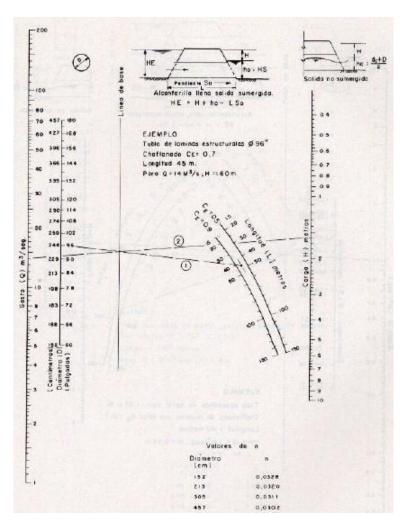
* Gasto


+

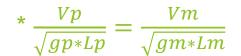
* Geometría de la vía

- * Tamaño
- * Forma
- * material

Mejor solución Técnicoeconómica



Fuente: Carciente, 1985.



PROTOTIPO

- * Dp=21"(0.5334 m)
- * *Vp*=1.5 *m/s*
- * *Lp*=5.5 *m*
- * Pendiente nula.
- * $\therefore Qp = 0.2235 * 1.5 = 0.3352 \frac{m^3}{s}$

LEY DE FROUDE

*
$$Ve = \frac{Vp}{Vm} = Le^{0.5}$$

*
$$Le = \frac{Lp}{Lm}$$

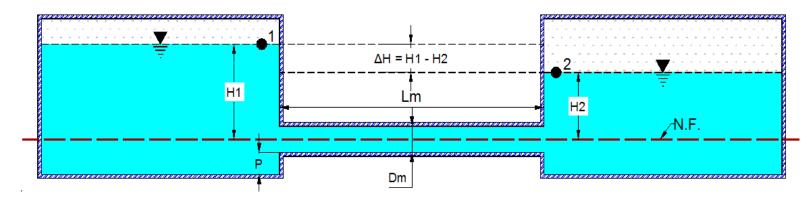
*
$$Ae = Le^2$$

*
$$Qe = \frac{Qp}{Qm} = Ae * Ve = Le^{2.5}$$

MODELO

* Pendiente nula.

Am = ?


Qm = ?

OBTENCIÓN DE LAS MEDIDAS DEL MODELO

Aplicando el teorema de Bernoulli del punto 1 a 2, se tiene:

$$H_{1} + \frac{P_{1}}{\gamma_{H_{2}0}} + \frac{v_{1}^{2}}{2g} = H_{2} + \frac{P_{2}}{\gamma_{H_{2}0}} + \frac{v_{2}^{2}}{2g} + \sum_{1}^{2} hf$$

$$H_{1} = H_{2} + k_{e} * \frac{v^{2}}{2g} + f * \frac{L}{D} * \frac{v^{2}}{2g} + k_{s} * \frac{v^{2}}{2g}$$

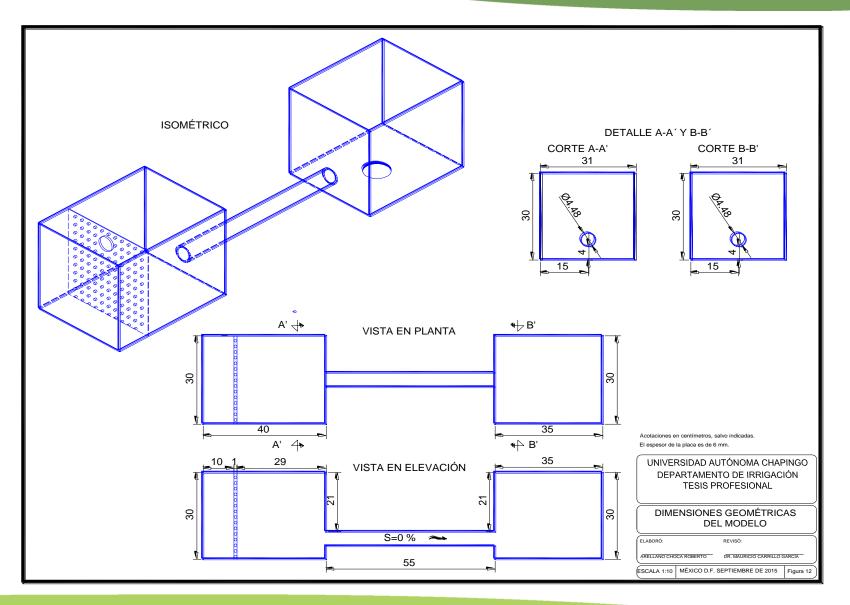
$$\Delta H = H_{1} - H_{2} = k_{e} * \frac{v^{2}}{2g} + f * \frac{L}{D} * \frac{v_{2}^{2}}{2g} + k_{s} * \frac{v^{2}}{2g}$$

$$\Delta H = \frac{v^{2}}{2g} * \left(k_{e} + f * \frac{L}{D} + k_{s}\right)$$

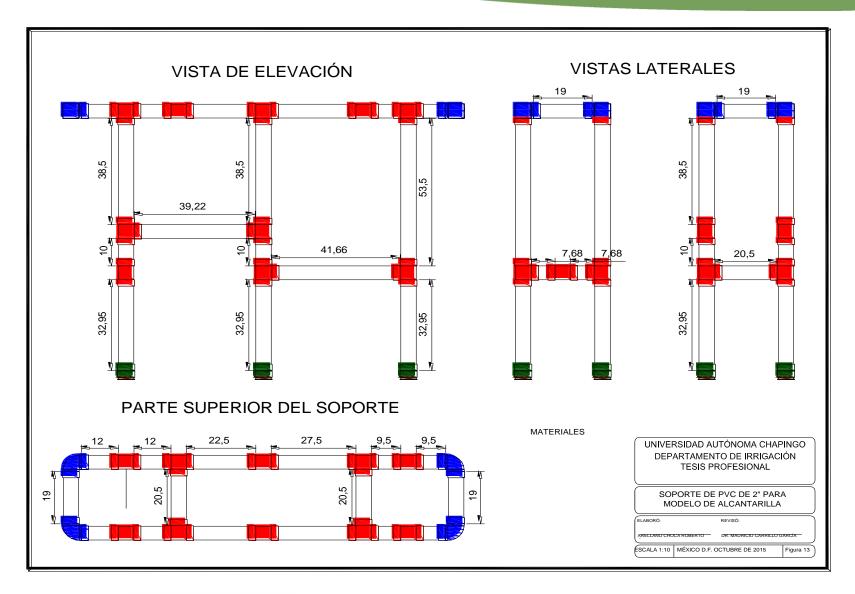
Análisis de los diámetros disponibles en laboratorio

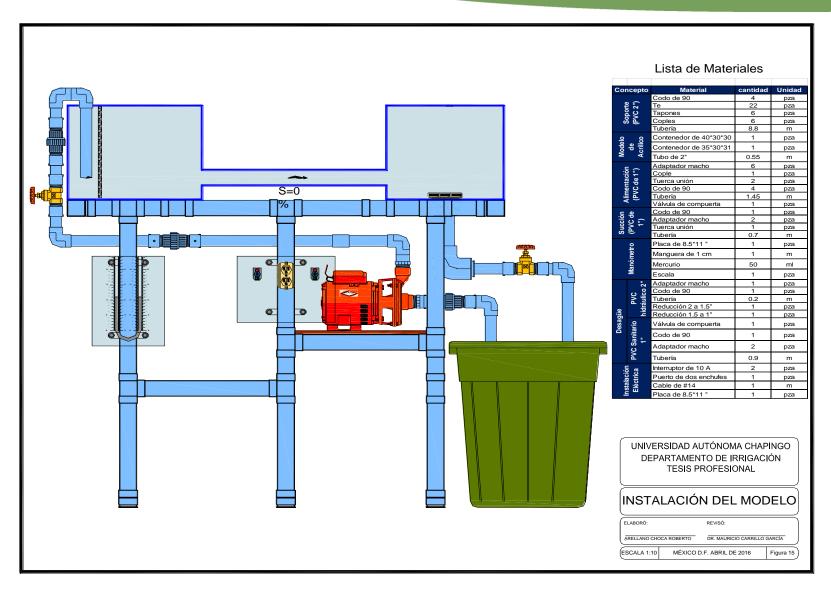
Concepto	Valor	Unidad	
Qp:	0.3352	m³/s	
Vp:	1.5	m/s	
Dp:	0.5334	m	
Lp:	5.5	m	
3:	0.0015	mm.	
K _e :	0.5	Adim.	
K _s :	1	Adim.	
V 20°:	1.007x10 ⁻⁶	m²/s	
g:	9.81	m/s²	

Características de diseño del modelo de la alcantarilla


Concepto	Descripción	Uni dad
Gasto	0.685	lps
Velocidad	0.43	m/s
Longitud	55	cm
Forma	circular	"
Material	Acrílico	11
Tipo de entrada	Bordes rectos	"
Diámetro nominal	5	cm
Pendiente	Nula	11

Dm	Dm	Le	Qe	Ve	Vm	Qm	Qm	Lm	E/D	Re	f	ΔН	Δh
(in)	(m)	""		II.	m/s	(m³/s)	(I/s)	(m)	""		""	(m)	(cm)
1.76	0.0448	11.9	489.145	3.45	0.43	0.0007	0.685	0.534	3.35x10 ⁻⁵	1.93x10 ⁴	0.026	0.017	1.728
1.26	0.0321	16.6	1125.563	4.08	0.37	0.0003	0.298	0.361	4.67x10 ⁻⁵	1.17x10 ⁴	0.030	0.013	1.266
0.76	0.0194	27.5	3963.950	5.24	0.29	0.0001	0.085	0.218	7.73x10 ⁻⁵	5.51x10 ³	0.037	0.008	0.799





MATERIALES Y METODOLOGÍA

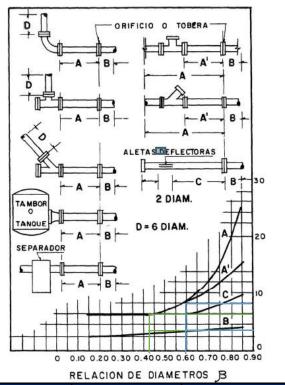
Concepto	Material	Cantidad	Unidad
	Codo de 90	4	pza
	Те	22	pza
Soporte	Tapones	6	pza
(PVC 2")	Coples	6	pza
	Tubería	8.8	m
	Contenedor de 40*30*30	1	pza
Modelo de Acrílico	Contenedor de 35*30*31	1	pza
	Tubo de 2"	0.55	m
	Adaptador macho	6	pza
	Cople	1	pza
Alimontosián	Tuerca unión	2	pza
Alimentación (PVC de 1")	Codo de 90	4	pza
	Tubería	1.45	m
	Válvula de compuerta	1	pza
	Codo de 90	1	pza
Supplifu	Adaptador macho	2	pza
Succión (PVC de 1")	Tuerca Unión	1	pza
	Tubería	0.7	m

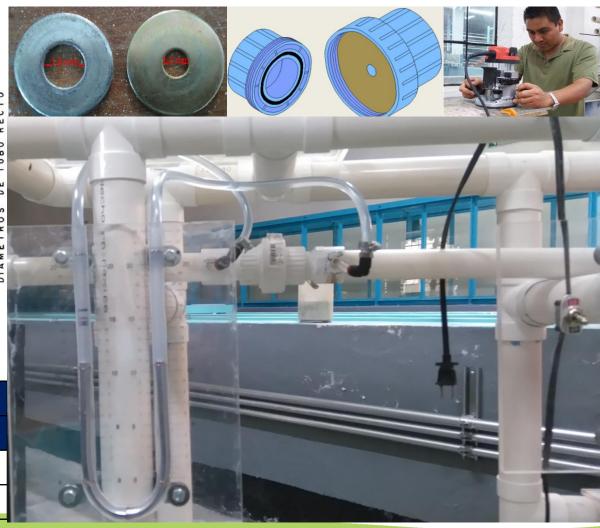
Concepto		Material	Cantidad	Unidad
		Placa de 8.5*11 "	1	pza
М	anómetro	Manguera de 1 cm	1	m
		Mercurio	50	ml
		Escala	1	pza
		Adaptador macho	1	pza
		Codo de 90	1	pza
	PVC hidráulico 2"	Tubería	0.2	m
güe		Reducción 2 a 1.5"	1	pza
Desagüe		Reducción 1.5 a 1"	1	pza
		Válvula de compuerta	1	pza
	PVC	Codo de 90	1	pza
	Sanitario 1"	Adaptador macho	2	pza
		Tubería	0.9	m
Instalación Eléctrica		Interruptor de 10 A	2	pza
		Puerto de dos enchufes	1	pza
		Cable de #14	1	m
		Placa de 8.5*11 "	1	pza

^{• *} NOTA: Para la unión de la tubería se utilizó pegamento cementado de PVC y teflón, según el tipo de unión. Por otra parte, para los contenedores y el conducto se utilizó cloroformo.

CONSTRUCCIÓN DEL MODELO

CONSTRUCCIÓN DEL SOPORTE





DISEÑO Y CONSTRUCCIÓN DEL MEDIDOR TIPO PLACA Y ORIFICIO (ISO 5167-1)

	Lon	g A. Arriba	Long. A. Abajo			
Relación d/D	2011					
		(A)	(B)			
Beta= 0.43	6Ф	18 cm	3 Ф	9 cm		
Beta= 0.6	8Ф	24 cm	3 Ф	9 cm		

RESULTADOS Y DISCUSIÓN

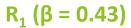
CALIBRACIÓN DEL MEDIDOR DE FLUJO TIPO PLACA Y ORIFICIO

$$Q = a * \Delta h^b y R^2$$

$$Q = a * H^b y R^2$$

$$b = \frac{\left(SC_{h-Q}\right)^2}{SC_h}$$

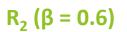
$$a = e^{\left(\frac{\left(\sum \ln Q\right) - \left(b * \sum \ln h\right)}{n}\right)}$$


$$SC_h = \sum (\ln h)^2 - \frac{\left(\sum \ln h\right)^2}{n}$$

$$SC_Q = \sum (\ln Q)^2 - \frac{\left(\sum \ln Q\right)^2}{n}$$

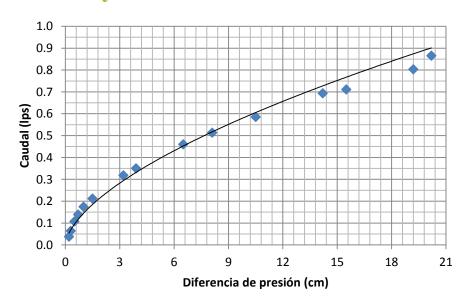
$$SC_{h-Q} = \sum (\ln Q * \ln h) - \frac{\left(\sum \ln Q * \sum \ln h\right)}{n}$$

$$r^2 = \frac{\left(SC_{h-Q}\right)^2}{\left(SC_Q * SC_h\right)}$$



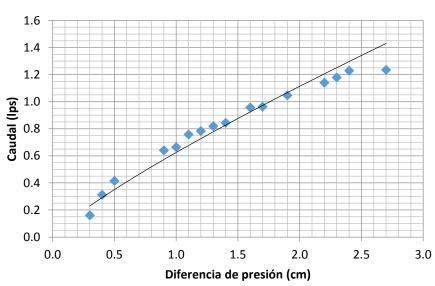
Lastina	T	t	h'	1	h:	2	Δh	Q						
Lectura	(s)	(s)	(cr	n)	(cr	n)	(cm	i) (lps)						
	140.64		10	1										
1	141.75	141.70	6 l		10.	35	0.2	0.04						
	142.9		5											
	83.42													
2	84.65	84.04	10	.2	10	.5	0.3	0.06						
	84.05													
	50.26													
3	50.36	50.12	2 10)	10	.5	0.5	0.11						
	49.75													
	38.23													
4	38.68	38.60	10	.1	10	.8	0.7	0.14						
	38.89													
	7.69						Ī							
12	7.63	7.72	3.2	17.4	7.4	14.2		0.69						
	7.84													
	7.48													
13	7.57	7.53	2.6	2.6 1	2.6 1	2.6 1	2.6 1	2.6 1	2.6 1	18.1	8.1	1 15	5.5	0.71
	7.53													
	6.61													
14	6.81	6.66	1	2	0.2	19	9.2	0.80						
	6.57			L										
	6.35													
15	5.92	6.18	0.5	2	0.7	20	0.2	0.87						
	6.28			L										

	Т	t	h2	h1	Δh	Q
Lectura	(s)	(s)	(cm)	(cm)	(cm)	(lps)
	8.52					
1	8.49	8.53	9.4	12.1	2.7	1.24
	8.59					
	8.37					
2	8.71	8.58	9.5	11.9	2.4	1.23
	8.65					
	9					
3	8.91	8.94	9.5	11.8	2.3	1.18
	8.9					
	9.29					
4	9.36	9.24	9.5	11.7	2.2	1.14
	9.07					
	16.22					
12	16.59	16.46	9.8	10.7	0.9	0.64
	16.56					
	25.61					
13	25.28	25.46	9.9	10.4	0.5	0.41
	25.49					
	33.93					
14	33.93	33.87	9.9	10.3	0.4	0.31
	33.75					
	66.04					
15	65	65.87	9.9	10.2	0.3	0.16
	66.57					



Rondana 1 (R₁)

Concepto	Valor
SC _h =	35.0700
SC _Q =	13.2223
SC _{h-Q} =	21.3159
b=	0.6078
a=	0.1450
R ² =	0.9799


• $Q = 0.1450 * \Delta h^{0.6078}$ con un $R^2 = 0.9799$

Rondana 2 (R₂)

Concepto	Valor
SC _h =	6.3910
SC _Q =	4.6761
SC _{h-Q} =	5.3302
b=	0.8340
a=	0.6247
R ² =	0.9507

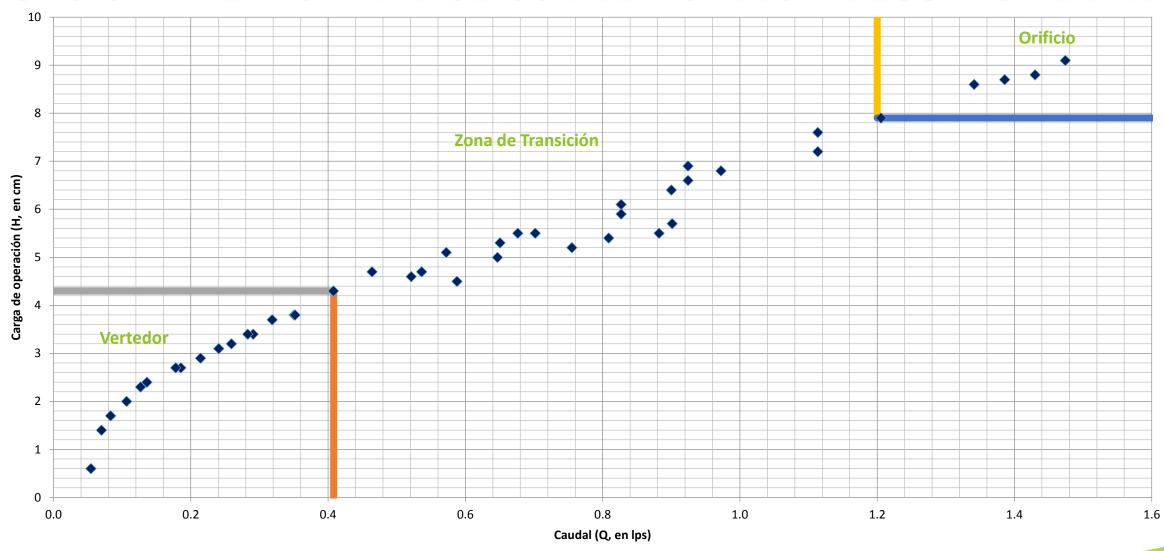
 $Q = 0.6247 * \Delta h^{0.834}$ con un $R^2 = 0.9507$

FUNCIONAMIENTO DEL MODELO DE LA ALCANTARILLA A DESCARGA LIBRE

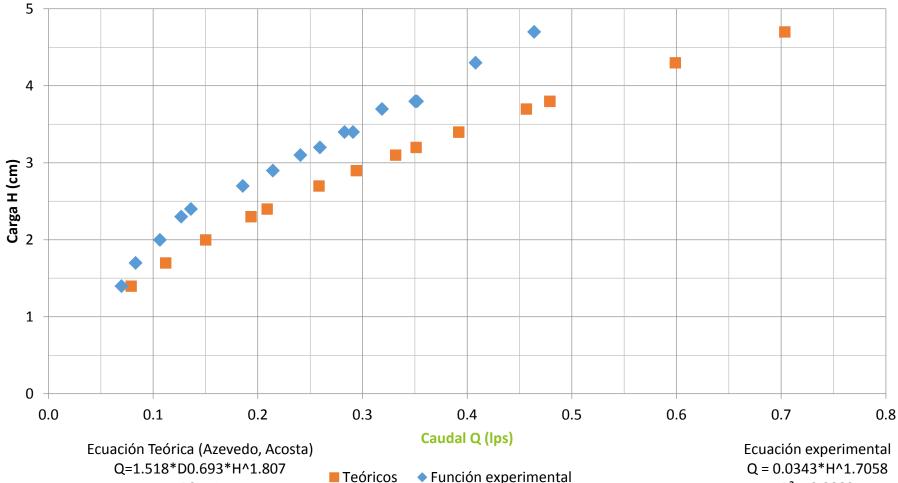
Rondana R₁

				11		
Lectura	h ₁	h ₂	Δh	H ₁	Н	Q
Lectura	(cm)	(cm)	(cm)	(cm)	(cm)	(lps)
1	9.70	12.5	2.80	12.8	9.1	1.474
2	9.50	12.3	2.80	12.6	8.9	1.474
3	9.40	12.1	2.70	12.5	8.8	1.430
4	9.30	11.9	2.60	12.4	8.7	1.386
5	9.60	12.1	2.50	12.3	8.6	1.341
6	9.70	11.9	2.20	11.6	7.9	1.206
7	9.60	11.6	2.00	11.3	7.6	1.114
8	9.80	11.8	2.00	10.9	7.2	1.114
9	9.90	11.5	1.60	10.6	6.9	0.924
10	9.60	11.3	1.70	10.5	6.8	0.972
11	9.80	11.4	1.60	10.3	6.6	0.924
12	9.85	11.4	1.55	10.1	6.4	0.900
13	9.60	11.0	1.40	9.8	6.1	0.827
14	9.90	11.3	1.40	9.6	5.9	0.827
15	10.00	11.2	1.15	9.2	5.5	0.702
16	9.80	10.9	1.10	9.2	5.5	0.676
17	10.10	11.2	1.05	9	5.3	0.651
18	10.00	10.9	0.90	8.8	5.1	0.572
19	9.90	10.6	0.70	8.5	4.8	0.464
20	9.90	10.6	0.70	8.4	4.7	0.464
21	10.00	10.6	0.60	8	4.3	0.408
22	10.10	10.6	0.50	7.5	3.8	0.350
23	10.10	10.5	0.40	7.1	3.4	0.291
24	10.15	10.5	0.35	6.6	2.9	0.260
25	10.00	10.3	0.30	6	2.3	0.229

Rondana R₂


Lectura	h ₁	h ₂	Δh	H ₁	Н	Q
Lectura	(cm)	(cm)	(cm)	(cm)	(cm)	(lps)
1	0.50	20.7	20.20	9.4	5.7	0.901
2	0.70	20.2	19.50	9.2	5.5	0.882
3	2.20	19.1	16.90	9.1	5.4	0.809
4	2.80	17.9	15.10	8.9	5.2	0.755
5	4.40	16.1	11.70	8.7	5.0	0.647
6	6.00	14.6	8.60	8.4	4.7	0.536
7	6.10	14.3	8.20	8.3	4.6	0.521
8	5.30	15.3	10.00	8.2	4.5	0.588
9	6.90	13.5	6.60	8.0	4.3	0.457
10	7.40	13.2	5.80	7.8	4.1	0.422
11	7.90	12.2	4.30	7.5	3.8	0.352
12	8.35	12.0	3.65	7.4	3.7	0.319
13	8.60	11.6	3.00	7.1	3.4	0.283
14	8.90	11.5	2.60	6.9	3.2	0.259
15	8.90	11.2	2.30	6.8	3.1	0.241
16	9.30	11.2	1.90	6.6	2.9	0.214
17	9.20	10.7	1.50	6.4	2.7	0.186
18	9.40	10.8	1.40	6.4	2.7	0.178
19	9.70	10.6	0.90	6.1	2.4	0.136
20	9.60	10.4	0.80	6.0	2.3	0.127
21	9.80	10.4	0.60	5.7	2.0	0.106
22	10.00	10.4	0.40	5.4	1.7	0.083
23	9.80	10.1	0.30	5.1	1.4	0.070
24	10.00	10.2	0.20	4.3	0.6	0.055

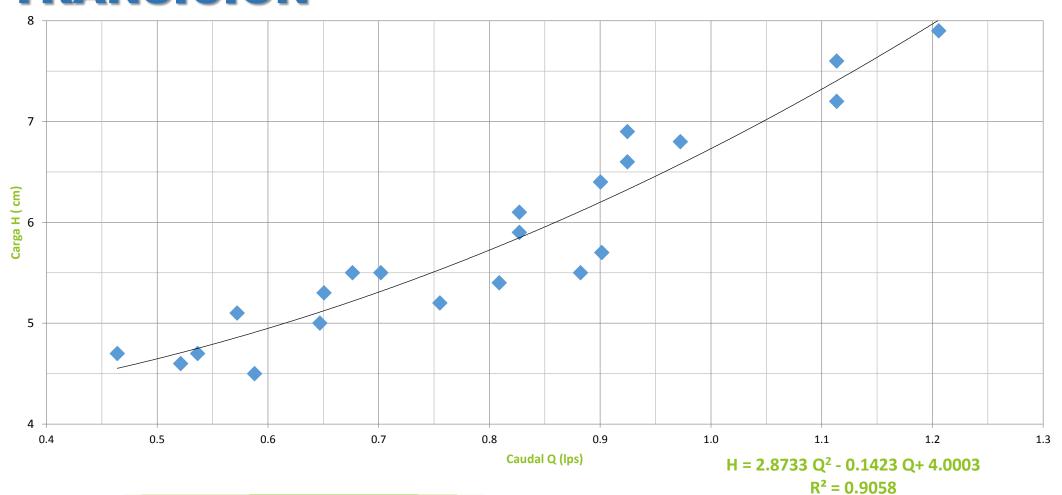
FUNCIONAMIENTO HIDRÁULICO DEL MODELO A DESCARGA LIBRE

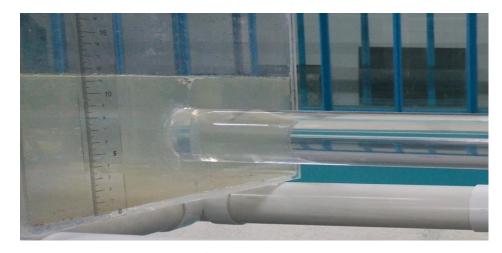

 $R^2 = 0.9882$

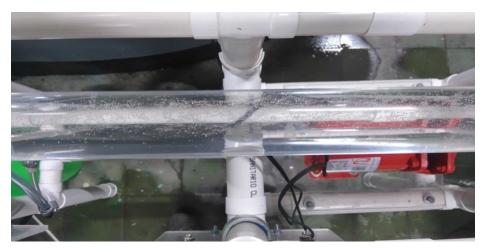
CURVA EXPERIMENTAL Y TEÓRICA DEL

VERTEDOR

Concepto	Valor
SCH=	1.7068
SCQ=	5.0255
SChq=	2.9114
b=	1.7058
a=	0.0343
r²=	0.9882


R2 = 1


DISTRIBUCIÓN Y AJUSTE DE LA ZONA DE TRANSICIÓN

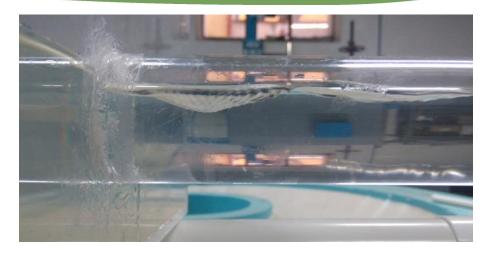


Formación de remolino a causa de falta de sumergencia

Acumulación de burbujas en la pared superior del conducto.

Introducción de una masa de aire debido a variaciones fuertes

Aumento de entrada de aire al conducto para formar la vena completa

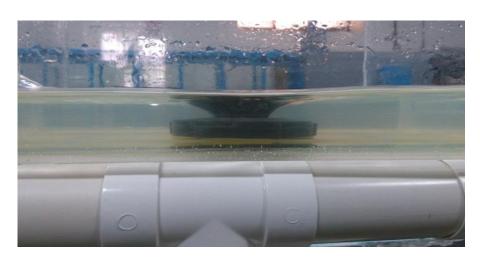


Flujo parcialmente lleno en transición de tubo corto a canal

Flujo a presión atmosférica en los límites a funcionar como canal

Salto hidráulico originado por la depresión del flujo de entrada

Funcionamiento a descarga libre



Funcionamiento a descarga ahogada

Vórtice en el desagüe

CONCLUSIONES

- El diseño y construcción del modelo de alcantarilla fue un éxito.
- La construcción del modelo se complicó por el tipo de material utilizado.
- El disipador funcionó correctamente.
- Se logró obtener una buena calibración de las rondanas R₁ y R₂ del medidor de placa y orificio, obteniendo R² de 0.9799 y 0.9507, respectivamente.

CONCLUSIONES

- Se obtuvo la ecuación $Q = 0.0343 * H^{1.7058}$ del funcionamiento del vertedor con un R²=0.9882.
- Se obtuvo la ecuación $H = 2.8733Q^2 0.1423Q + 4.0003$ para la zona de transición con un $R^2 = 0.9058$.
- El modelo puede ser utilizado para fines académicos.
- El presente trabajo puede servir como referencia para investigaciones futuras.

